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Abstract
Nanoparticles (NP) are structures with at least one dimension of less than 100 nanometers (nm) and unique properties. Silver 
nanoparticles (AgNP), due to their bactericidal action, have found practical applications in medicine, cosmetics, textiles, 
electronics, and other fields. Nevertheless, their less advantageous properties which make AgNP potentially harmful to 
public health or the environment should also be taken into consideration. These nanoparticles are cyto- and genotoxic and 
accumulate in the environment, where their antibacterial properties may be disadvantageous for agriculture and waste 
management. The presented study reviews data concerning the biological effects of AgNP in mammalian cells in vitro: cellular 
uptake and excretion, localization in cellular compartments, cytotoxicity and genotoxicity. The mechanism of nanoparticle 
action consists on induction of the oxidative stress resulting in a further ROS generation, DNA damage and activation of 
signaling leading to various, cell type-specific pathways to inflammation, apoptotic or necrotic death. In order to assure 
a safe application of AgNP, further detailed studies are needed on the mechanisms of the action of AgNP on mammalian 
cells at the molecular level.
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INTRODUCTION

Over the last 30 years, nanotechnology has developed 
many structures with at least one dimension of less than 
100 nanometers. There are a variety of nanomaterials 
and their properties differ depending on shape and size. 
These have found many practical applications in medicine, 
especially in cancer treatment and drug delivery [1, 2], 
industry and everyday life, but they also are examined 
with increasing concern because of their toxicity [3, 4, 5, 6] 
and environmental risk [6, 7]. A number of comprehensive 
reviews on nanoparticle properties and applications have been 
published in the last few years, e.g. [8, 9, 10, 11, 12, 13]. Due 
to their bactericidal properties, silver nanoparticles (AgNP) 
are the most frequently applied nanomaterials. They are used 
in textiles, cosmetics, as products for domestic cleaning, air 
cleaners, food packaging, coating for refrigerators, water 
disinfection, in fact, in every application where bacteria 
may exert a harmful effect. In particular, an important use 
is that in hospitals and general medical practice, in medical 
devices, and in dressings for the treatment of wounds, burns 
and ulcers (review in [3]).

The antimicrobial properties of AgNP are the cause of 
their potential risk to the environment. AgNP released from 
industrial activities and consumer products accumulate 
in sewage sludge. Thus, they can interfere with beneficial 
bacteria in waste water and sewage treatment. Further, due to 
their presence in water, they accumulate in plants and animals 
entering their ecological food chains. The bioaccumulation 
and propagation of nanoparticles through food chains is one 
fundamental concern in nanotoxicology. Their impact on the 
environment is discussed in [6, 7, 13, 14].

Silver ions have antibacterial properties [15, 16]. They can 
be liberated from AgNP; however, most scientists consider 
silver ions as only partly responsible for the antibacterial 
effects of AgNP [17, 18, 19]. Rather, the AgNP properties, 
similarly to those of other nanoparticles, result from the 
unique physicochemical characteristics connected with their 
small size: such properties as surface energy, charge and 
solvation are relevant to their interactions with biomolecules 
and behaviour in the cell [20, 21, 22, 23]. Their shape and 
coating (if applied) can be modified to obtain the desired 
characteristics.

One important concept of nanoparticle activity in vivo is 
that of corona [22]. These authors indicate that:

the ‘surfaces’ of nanoparticles in a biological environment 
are modified by the adsorption of biomolecules such as 
proteins and lipids, leading to a biomolecular interface 
organization that may be loosely divided into two 
components named the ‘hard’ and ‘soft’ coronas with 
(respectively) ‘long’ and ‘short’ typical exchange times.

This concept explains the somewhat unpredictable 
behaviour of nanoparticles in the biological milieu, 
showing that the biological effect depends on the type of 
macromolecules met and bound upon interaction with the 
cell. Further, corona components exchange can take place 
while the particle travels inside the cell. The corona concept 
also explains the differences between apparently similar 
nanoparticles, because even small changes in their shape, 
size or coating may radically modify the composition of the 
corona [20, 23]. The impact of properties of the corona on 
the cellular response to nanoparticle treatment is still not 
sufficiently understood.

Because of the numerous practical applications of AgNP, 
they may enter living organisms, including the human body, 
in food, and also through skin or the respiratory system [4, 
5], and even pass the blood-brain barrier [24]. The toxicity 
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of AgNP in vivo and in vitro, in eukaryotic cells was recently 
reviewed in [11]. Here, experimental data are reviewed 
concerning the impact of AgNP on biological functions, as 
studied in various mammalian cellular models, originating 
from human or animal normal and cancer cells.

UPTAKE OF AgNP AND THEIR INTRACELLULAR 
LOCALIZATION

All nanoparticles are taken up by mammalian cells by 
such mechanisms as pinocytosis, endocytosis dependent 
on caveolae and lipid raft composition, clathrin-dependent 
endocytosis and phagocytosis [25]. AgNP are no exception in 
this respect: as shown in [25], normal human lung fibroblasts 
(IMR-90) and human glioblastoma (U251) take up AgNP 
by clathrin-dependent endocytosis and macropinocytosis. 
Uptake kinetics, intracellular localisation and exocytosis 
depend on nanoparticle size, surface characteristics 
(including coating type, if any), as well as on the ability 
to form aggregates. Also, the cell type affects the uptake 
kinetics. In the case of AgNP(6-20 nm), they were usually 
present inside the cells after a 2h treatment and the uptake 
was linear during the 2h-48h exposure [25] and resulted 
from a balance between exo- and endocytosis. It took 48 h to 
expel 66% of AgNP taken up during 2h incubation, showing 
that exocytosis was significantly slower than endocytosis in 
the examined cells and that probably some of the remaining 
AgNP were localized in an inaccessible cellular compartment. 
An example of the uptake dependence on cell type is given 
in [26]: AgNP were detected in human blood monocytes 
(CD14+) but not in T-cells (CD3+). A review paper [27] 
summarizes the data on relations between nanoparticle size 
and uptake mechanisms and points to their inconsistence. 
It seems that the particle size is less important than the 
physicochemical properties. The mechanisms of AgNP 
uptake, transport pathways inside the cell and cellular targets 
are diagrammatically presented in Fig. 1.
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Figure 1. Diagram showing the AgNP uptake, transport pathways inside the cell 
and cellular targets

The intracellular sites of localization of AgNP vary 
depending on the cell type and the method applied. Specific 
staining of cellular structures (endo-lysosomes, nuclei, 
Golgi complex and endoplasmatic reticulum) in human 
mesenchymal stem cells (hMSC) with the use of fluorescent 

probes showed that AgNP (50 ± 20 nm) were present mainly 
within endo-lysosomal structures. They were absent in the 
cell nucleus, endoplasmic reticulum or Golgi complex. They 
also formed agglomerates in the perinuclear region [28].

In contrast with these observations with the use of a 
light microscope, the transmission electron microscopic 
(TEM) analysis indicated the presence of AgNP inside the 
mitochondria and nucleus, as stated in the paper by Asharani 
mentioned above [25]. According to those authors, this 
observation implicates the direct involvement of AgNP in the 
mitochondrial and DNA damage. Others found AgNP (20-
40 nm) in rat alveolar epithelial cells (R3-1) as aggregates or 
single particles in the cytosol, in the nucleus and in the nuclear 
membrane 30 min. after AgNP exposure [29]. Similarly, 
AgNP (20 nm) were found in the cytoplasm, mitochondria 
and nuclei of human cell lines, A549 and HepG2 [11]. Fig. 2 
shows an example of TEM microphotograph of AgNP (20 
nm) in the cytoplasm of A549 cells.

Figure 2. Transmission electron microscope image of silver nanoparticles in 
cytoplasm of A549 (lung adenocarcinoma epithelial) cells treated with AgNP 
(20 nm) for 48 h at concentration 50 µg/ml

As can be concluded from this brief review, AgNP uptake 
and localisation in the cell depend on the cell type and the 
specific analysis method applied; the surface properties and 
size of AgNP also are important factors.

INHIBITION OF PROLIFERATION AND CELL DEATH

Examination of AgNP action in vivo demonstrated the 
cytotoxic effects of AgNP in eukaryotic organisms (reviewed 
in [11]. Experiments in vitro with the use of various types 
of cellular models not only confirmed the cytotoxicity but 
also allowed analysis of the molecular mechanisms of AgNP 
action, such as proliferation inhibition, apoptotic or necrotic 
death, alterations in the expression of genes essential for 
survival, and the pathways leading to genetic damage.

Cytotoxicity in vitro is usually estimated with the use 
of colorimetric tests; their principle is the reduction of 
tetrazolium salts, MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide) or XTT (2,3-bis-(2-methoxy-
4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide) to 
formazan. The reduction is carried out by a mitochondrial 
reductase and is an indirect measure of cell population viability 
and proof of an undamaged mitochondrial respiratory chain. 
Examples of MTT test application for AgNP cytotoxicity 
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estimations can be found e.g. in [30]: AgNP (69 nm) inhibited 
proliferation of RAW264.7 cells in a concentration and time 
dependent way. Smaller size AgNP (20 nm) were shown 
to be more effective than the larger ones. Another paper 
[31] reported the dependence of the MTT-measured AgNP 
cytotoxicity on their size and agglomeration/ aggregation 
state. The 3 human cell lines tested were THP1 (leukemic 
monocyte-like cells), HepG2 (hepatocellular liver carcinoma) 
and A549 (lung adenocarcinoma epithelial cells). Among 
these cell lines, the HepG2 proved to be the most sensitive 
and THP1 the most resistant. Typically, the cytotoxic effect 
was in proportion to AgNP concentration and incubation 
time (the latter with the exception of HepG2 cells). The 
agglomeration state of AgNP affected the examined cell types 
to various extents apparently related to the cellular binding 
and uptake. Also, the resistance of THP1 cells which are 
‘professional phagocytes’ seems to be related to their high 
endocytotic and exocytic activities.

The cytotoxic effect of AgNP treatment can also be 
evaluated by the propidium iodide (PI) assay. This dye is 
membrane impermeant and thus, viable cells are not stained, 
hence the common PI application for identifying dead cells. 
Fig. 3 shows the result of the PI assay for A549 cells [31].The 
dependence of the cytotoxic effect on AgNP concentration 
and time of treatment can be seen.

Figure 3. Cytotoxic effect of treatment of A549 cells with increasing concentrations 
(10, 50 and 100 µg/ml) of AgNP (20 nm) evaluated by the propidium iodide assay. 
Standard deviation indicated. Asterisks denote statistically significant difference 
(P < 0.05) from the respective control. Data for the plot taken from Lankoff et al. [31]

Similar cytotoxicity determinations were carried out 
by other authors who also determined the cell death type. 
Human fibrosarcoma HT-1080 and A431 human epithelial 
carcinoma cells were treated overnight with 7-20 nm spherical 
AgNP (0-50 µg/ml) and cytotoxicity determined by the XTT 
test [32]. The viability decreased in proportion to the AgNP 
concentration. The cell death type depended on the AgNP 
concentration. Apoptosis (with the characteristic pattern of 
DNA fragmentation) was seen at the lower concentration 
range; the onset of apoptosis monitored with caspase-3 assay 
was 0.78 µg/ml in HT-1080 cells and 1.56 µg/ml in A431cells, 
whereas the concentration causing necrotic death was equal 
(12.5 µg/ml) in both cell lines.

One of the early studies on the difference in cellular 
sensitivity to the cytotoxic action of AgNP was that carried 
out on mouse fibroblasts NIH3T3 and human colorectal 

carcinoma HCT116 cells [33]. The cells differed considerably 
in the response to AgNP (1 – 100 nm). Incubation of NIH3T3 
cells with AgNP at the concentration of 50 µg/ml for 24h 
induced apoptosis (estimated from PARP cleavage), whereas 
after the same treatment apoptosis was not detected in 
HCT116 cells. Interestingly, in both cell lines p53 and c-Jun 
N-terminal kinase were activated. However, in HCT116 cells, 
an increased expression of the anti-apoptotic protein BCL-2 
(B-cell lymphoma 2) was observed, thus explaining the 
resistance to AgNP. In contrast, ROS (reactive oxygen species) 
was generated by mitochondria in NIH3T3 cells, followed by 
JNK activation and translocation to mitochondria of the pro-
apoptotic BAX (Bcl-2-associated X protein). The result was 
the release of the mitochondrial cytochrome c and apoptosis.

The cytotoxic effect of AgNP treatment often is often due 
to enhanced expression of apoptosis-related genes and the 
induction of apoptotic death. This is the case in 2 cell lines, 
human colon adenocarcinoma HT29 and baby hamster 
kidney, BHK-21,where AgNP (20 nm) treatment at 11 µg/ml 
induced apoptosis [34]. Using real-time polymerase chain 
reaction (RT-PCR) that enables quantitative estimation of 
the products of amplification of the chosen genes, expression 
profiles were obtained of pro-apoptotic and anti-apoptotic 
genes. Expression of the pro-apoptotic genes, such as BAK, 
BAD, C-MYC and caspase 3 gene, increased in AgNP treated 
cells, whereas that of the anti-apoptotic genes (BCL-2, BCL-XL) 
decreased. Importantly, there was a pronounced increase 
in the expression of P53, pointing to the p53-dependent 
apoptotic mechanism.

The size-dependent cellular toxicity of AgNP 10, 50, and 
100 nm and cell death type were examined in MC3T3-E1 
and PC12 cells [35]. The cytotoxic effect was size- and dose-
dependent as well as cell type dependent: the treatment 
caused apoptotic death in the MC3T3-E1 cells, and necrosis 
in the PC12 cells. AgNP (10 nm) were more toxic than the 
larger (50 and 100 nm) particles.

Although usually inhibition of cell proliferation was 
observed upon incubation with AgNP, there is one example 
of its stimulation. In HepG2 cells incubated with AgNP 
at concentrations up to 0.5 mg/l no cytotoxic effect was 
observed, and the proliferation rate was higher than that in 
the untreated cell culture [18]. Exposure to AgNP >1.0 mg/l 
gave a considerable cytotoxicity and increased the frequency 
of micronucleus formation. In contrast, in the rat coronary 
endothelial cells (CEC), AgNP (45 nm) at low concentrations 
(1.0-10 µg/ml) inhibited proliferation, whereas at high 
concentrations (50-100 µg/ml) stimulated it. The stimulation 
was dependent on nitric oxide generation, in particular, on 
activation of nitric oxide synthase (eNOS) resulting from the 
phosphorylation of serine 1177. The stimulated proliferation 
was blocked by the eNOS inhibitor, NG-nitro-L-arginine 
methyl ester [36].

Growth stimulation by low concentrations of AgNP, 
such as described in [18], is caused by ROS generated in the 
treated cells. AgNP, similarly to other types of nanoparticles, 
cause oxidative stress (see the following section). This effect 
of ROS has been known for some time. Growth factor 
receptors that have tyrosine kinase activity are inactivated 
by tyrosine phosphatases, enzymes which contain cysteine 
residue in their catalytic site. Due to the specific structure 
of the site, the cysteine residue is extremely sensitive to 
oxidation. Hence, intracellular ROS generation is the cause 
of the phosphatase inactivation. There follows a shift in the 
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equilibrium between the active and inactive forms of the 
receptor kinases resulting in an apparent activation of the 
kinase activity. Thus, proliferation is stimulated, although 
there is no ligand-mediated activation of the receptor [37].

In summary, the results of the experiments with AgNP in 
vitro show that the cytotoxic effects depend on nanoparticle 
size and surface properties, concentration, time of treatment 
and cell type-specific response. The lack of standards in 
nanoparticle research makes the comparisons of cytotoxic 
effects difficult or impossible. Nevertheless, it is obvious that 
AgNP can exert toxic effects and are potentially harmful to 
public health and the environment.

OXIDATIVE STRESS

Under physiological conditions, reactive oxygen species 
(ROS) are present in every cell, being produced by the 
mitochondrial and cytoplasmic oxidation processes. 
Under environmental stress, the cell reacts by increased 
ROS generation and this leads to imbalance between ROS 
generation and their neutralisation by antioxidative enzymes 
and low molecular weight antioxidants, among others by 
glutathione. This disturbance of the redox equilibrium is 
defined as oxidative stress. Under conditions of oxidative 
stress the cell accumulates ROS, and the antioxidative 
response that follows involves modifications in signalling 
pathways, among them – activation of mitogen activated 
protein kinases (MAPK) and release of pro-inflammatory 
cytokines. ROS are highly reactive and thus, able to modify 
cellular components, among them DNA. The oxidative 
damage thus inflicted leads to genotoxic effects, discussed 
further in the text.

ROS increase due to nanoparticle treatment has been 
shown to be the key factor in the biological effects in vivo 
and in vitro [17, 19, 29, 38, 39, 40, 41]. From the TEM 
microphotographs it can be judged that AgNP of various 
size and shape accumulate in the mitochondria. It is possible 
that this is the direct cause of mitochondrial damage and 
the disturbed function of the respiratory chain resulting 
in ROS generation and oxidative stress. An example of 
such response is that of BRL 3A rat liver cells to AgNP 
(15 and 100 nm) treatment [39]. The cellular level of ROS 
(determined using the dichlorodihydrofluorescein diacetate 
method) increased in a AgNP concentration-dependent 
manner and reached a maximum at 6h. Treatment at 25 
and 50 µg/ml resulted in an approximately 10-fold increase 
in ROS generation as compared to the control. The effect of 
Ag NP on mitochondrial membrane potential (MMP) was 
evaluated after a 24h exposure to AgNP using the rhodamine 
123 uptake assay. The results indicated that there was a 
significant decrease (80%) of MMP both at 25 and 50 µg/ml 
AgNP. Also, a significant depletion of GSH (by 70% relative 
to control) was observed at 25 µg/ml AgNP. In all these 
tests the results did not depend on AgNP size, in contrast 
with other reports. A decrease in the cellular glutathione 
content after AgNP treatment was also observed in mouse 
RAW264.7 cells [30].

The influence of AgNP size on the extent of oxidative stress 
was stated in rat macrophages: 24h treatment with AgNP 
15 nm, AgNC -30 nm and AgNC- 55 nm gave the most 
pronounced ROS increase in the case of the 15 nm particles 
[42]. Consistently, antioxidant treatment exerted a protective 

effect: N-acetyl-L-cysteine (NAC) prevented the significant 
ROS increase noted in human Chang liver cells treated with 
AgNP (28 -35 nm) [43]. NAC also decreased AgNP toxicity 
and DNA damage in human hepatoma cells, HepG2 [19]. 
Similarly, a strong protective effect of antioxidants from 
Gentiana asclepiadea flower and haulm extracts was observed 
in HEK 293 cells treated with AgNP (20 nm): oxidative DNA 
base lesions and strand breaks were considerably diminished 
[44, 45].

Enhanced expression of genes coding antioxidative defense 
proteins is a typical feature of the response to oxidative stress. 
In HepG2 cells treated for 24h with 0.2 µg/ml AgNP (5-10 
nm), RT-PCR was applied to analyze the expression of SOD1 
(superoxide dismutase 1), GPx1 (glutathione peroxidase 1) 
and catalase [19]. The mRNA levels of catalase and SOD1 
(but not GPx1) were significantly higher than those in 
the untreated cells. Another set of genes was examined in 
HeLa cells after 4h incubation with AgNP (5-10 nm): heme 
oxygenase (HO-1), metallothionein-2A (MT-2A) and heat 
shock protein 70 (HSP70). Expression of MT-2A and HO-1 
significantly increased, whereas that of HSP70 remained 
unchanged [46]. Similar observations were made in IMR-90 
and U251 cells [25].

The expression of another group of genes is stimulated 
after treatment with inducers of oxidative stress, those coding 
the inflammation-related proteins, such as interleukins, 
cytokines (e.g. tumour necrosis factor, TNF-α) and VEGF 
(vascular endodermal growth factor). These proteins are 
released into the medium and can be estimated in cell cultures 
of AgNP treated cells. Thus, mesenchymal stem cells (hMSC) 
released significantly increased amounts of interleukin IL-8 
and VEGF into the medium in result of treatment with AgNP 
(<50 nm) for 24h at a concentration as low as 1 µg/ml [47]. Rat 
macrophages treated with AgNP (15 nm, 30 nm and 55 nm) 
for 24h released TNF-α, MIP-2 (macrophage inhibitory 
protein-2) and IL-1ß (interleukin-1ß) at concentrations 
significantly different from the control only after treatment 
with AgNP-15 nm [42]. Higher cytokine expression was 
noted in IMR-90 and U251 [48]. In mouse macrophages 
RAW264.7 treated with AgNP (69 nm, 0.2-1.6 µg/ml) for 
24-96h enhanced expression of TNF-α coding gene and 
increased TNF-α synthesis preceded apoptosis [30].

The proposed direct action AgNP on membrane receptors 
and subsequent ROS generation and activation of signaling 
pathways involving various protein kinases was recently 
reviewed in [27]. The 3 main groups of kinases are the extra-
cellular signal regulated kinases, p38 and c- Jun N-terminal 
kinases. Redox-sensitive transcription factors, NRF2 (nuclear 
factor (erythroid-derived 2)-like 2) and NF-κB (nuclear 
factor kappa-light-chain-enhancer of activated B cells) also 
participate in the cellular response to AgNP. Depending 
on the nanoparticle size and concentration, as well as 
the cell type, the outcome is stimulation of proliferation, 
inflammation and/or apoptotic death.

The production of ROS is considered to specifically initiate 
the NLRP3 inflammasome [43, 50, 51, 53], the multiprotein 
complex specific for myeloid cells that activates caspase-1, 
which cleaves proIL1β, producing the active interleukin. The 
role of mitochondrial dysfunction was recently stressed [52] 
and – although not directly confirmed for AgNP – may be 
the case also in AgNP treated cells. Another possibility, not 
excluding the first one, is connected with the observation 
of causal link between endoplasmic reticulum (ER) stress 
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and inflammasome activation [51]. It is plausible to assume 
that the same type of mechanism is activated under the 
influence of AgNP (and also other types of nanoparticles) 
which interact directly with ER and disturb the folding 
of protein molecules, thus inducing the ER stress [53, 54] 
(Fig. 4).
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Figure 4. Proposed pro-inflammatory pathways induced by AgNP

GENOTOXICITY

AgNP-induced oxidative stress and resulting high level 
of ROS is the cause of DNA lesions, such as DNA breaks, 
oxidative adducts, oxidative single base damage causing 
point mutations. Apart from the direct damage, ROS is also 
the cause of lipid peroxidation and its products (e.g. nonenal) 
react with DNA, adding to the genotoxic effect. All these 
lesions – if left unrepaired by the cellular repair systems – are 
potentially carcinogenic.

DNA damage in cells of various origins is usually detected 
with the use of single cell electrophoresis or comet test 
which measures the sum of single and double strand breaks 
in individual cells (reviewed in [55]). In AgNP treated 
mammalian cells, the extent of DNA breakage was usually 
dependent on the particle size, concentration and time of 
treatment, as well as on cell type. Most experiments were 
carried out with human or mouse cells: L5178Y/Tk(+/-) 
mouse lymphoma cells [41], human peripheral blood cells 
[56], human mesenchymal stem cells (hMSCs) [47], NT2, 
human testicular embryonic carcinoma cell line, and 
primary testicular cells from C57BL6 mice of wild type 
and 8-oxoguanine DNA glycosylase knock-out (mOgg1(-/-) 
genotype [57], human normal bronchial epithelial (BEAS-2B) 
cells [16], human liver cells [22] and kidney cells [44].

The comet assay can also be used for determination of 
oxidative base damage by combining it with endonucleases 
that recognize specific lesions. An enzyme often applied is the 
formamidopyrimidine DNA glycosylase (FPG). It was used to 
estimate oxidative base damage in HepG2 cells treated with 
AgNP (20 nm), and compared with that inflicted by 200 nm 
Ag particles and TiO2 nanoparticles [58] (Fig. 5).

One consequence of the oxidative stress caused by AgNP 
is lipid peroxidation and DNA lesions caused by the reaction 
of peroxidation products with base residues. To the resulting 
bulky DNA adducts belong among others, etheno adducts 
formed in reaction with the main lipid peroxidation product, 
trans-4-hydroxy-2-nonenal. They can be determined by 
32P-postlabelling assay, a method often used for the estimation 
of exposure effects to mutagens and carcinogenic chemicals 
present in the environment [50]. With this method, DNA 
adducts were shown to form after 24h incubation of A549 

cells with AgNP (30-50 nm) in a concentration-dependent 
manner (0-15 µg/ml). Treatment with NAC decreased adduct 
formation, thus indicating that they were formed as a result 
of oxidative stress [17].

A more recent and often applied method of DNA double 
strand break (DSB) estimation is the counting of gamma 
H2AX foci, which are formed at the sites of damage. Their 
number per cell corresponds with the number of DSB per cell 
[59]. It was shown that gamma H2AX foci (and hence, DSB) 
are formed in AgNP treated cells, for example, in HepG2 cells 
treated with AgNP (5-10 nm) at low concentrations (1-2 µg/ml) 
for 24h [19]. Consistently, in the same cells, treatment with 
AgNP (7-10 nm) induced micronuclei formation [18]. The 
micronuclei test is a standard in genotoxicity estimation 
[60]. A recently established significant association between 
micronuclei frequency in healthy human subjects and cancer 
risk [61], as well as neurodegenerative diseases [62], points to 
the potential health risk linked with excessive use of AgNP.

Micronuclei indicate the presence of the chromosomal 
damage which can be characterized in more detail by a 
considerably more time consuming methods. In the already 
mentioned human cell lines, lung fibroblasts (IMR-90) 
and glioblastoma (U251) after AgNP (6-20 nm, 25 µg/ml) 
treatment induced chromosomal aberrations. Their frequency 
was significantly higher in U251 cells than in the fibroblasts, 
corresponding with the DNA breakage level [38].

CONCLUSIONS

Figure 6 shows the effects of AgNP at the cellular level 
and summarizes the present state of knowledge reviewed in 
the presented study. As in the case of other nanoparticles, 
the most important effect apparently is the oxidative stress. 
The enhanced generation of ROS affects the mitochondrial 
respiratory chain and increases the amount of unfolded 
and misfolded proteins in the endoplasmic reticulum (ER), 
inducing the ER stress and the unfolded protein response 
(UPR). Both these types of cellular damage lead to a 
further ROS generation, DNA damage and the activation of 
signaling resulting in various, cell type-specific pathways to 
inflammation, apoptotic or necrotic death.

Figure 5. Oxidative DNA damage recognized by formamidopyrimidine DNA 
glycosylase in HepG2 cells for 2h. Untreated cells served as controls. Statistically 
significant difference from control was found for Ag particles. Mean values are 
shown ±standard deviation, n = 4, p < 0.05. Measure of damage was the % DNA in 
the comet tail. Reproduced with permission of the Nukleonika publisher from [58]
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Figure 6. Mechanisms of AgNP cytotoxicity in the mammalian cell

Generally, the reviewed data seem to indicate that 
mammalian cells respond to AgNP in a similar way as to 
other factors that induce oxidative stress, including silver 
ions. However, this is not the case: a recent paper [63] shows 
that a considerable difference exists between gene expression 
profiles in human lung epithelial A549 cells treated with 
AgNP (more than 2-fold upregulation of more than 
1,000 genes) or with Ag+ ions (133 genes), although the latter 
also induce oxidative stress. To achieve a full understanding 
of the molecular and cellular mechanisms of the response to 
AgNP, research must continue. So far, the experimental data 
point to mutagenic and carcinogenic properties of AgNP. In 
view of the potential health hazard, further basic research 
and elaboration of safety measure issues seem to be most 
important.
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